
A BSP-based Parallel Iterative Processing System with Multiple Partition Strategies
for Big Graphs

Zhigang Wang, Yubin Bao
Yu Gu, Fangling Leng, Ge Yu

College of Information Science & Engineering
Northeastern University

Shenyang, China
wangzhigang1210@163.com

{baoyb, guyu, lengfl, yuge}@mail.neu.edu.cn

Chao Deng, Leitao Guo

China Mobile Institute
China Mobile Corp.

Beijing, China
{dengchao, guolt}@chinamobile.com

Abstract—Many applications in real life can produce a large
amount of data which can be modeled by a graph. A large
graph usually has millions of vertices and billions of edges.
This paper presents a BSP-based system, called BC-BSP+, to
process large graphs iteratively in parallel. It has the flexibility
to configure policies (i.e., disk management parameters) and
extend functions (i.e., programming interfaces), and to compute
large-scale graphs with fault tolerance and load balance.
Especially, three graph partition strategies are proposed to
support large graph processing: Randomized Hash Partition
(RHP), Balanced Hash Partition (BHP) and Vertex-Cut based
on the Range Partition method (VCRP). Lots of experiments
are conducted to evaluate BC-BSP+. The experimental results
show that the performance of VCRP is better than that of
BHP, but the raw graph of the former must be crawled by the
bread first search algorithm and vertex IDs must be numbered
consecutively. We compare BC-BSP+ with Hadoop, a system
based on MapReduce, and the speedup is roughly 8. Moreover,
compared with the BSP-based systems, Hama and Giraph, the
speedup is also 2 to 6 benefitting from VCRP.

Keywords-BSP; MapReduce; graph process; load balance;
graph partition;

I. INTRODUCTION

Graph is an abstract data structure with numerous appli-

cations. It can express the real world effectively, such as the

road network, the reference among technological literature,

the links among web pages, and the relationship in social

networks. The theory and algorithms on graphs have been

well-studied over the last decades. However, most of them

are only suitable for small graphs. With the development of

the information technology, the scale of data is increasing

drastically, which leads to many large-scale graphs. For in-

stance, Google and Yahoo need to evaluate the importance of

billions of web pages, which are modeled as a graph. Given

that the graph of web pages is organized by the adjacency

list and the size of one whole record is 100 bytes, for a

graph with 10 billion vertices and 60 billion edges, it will

occupy storage space with more than 1 TB. The cost of time

and space of processing so large-scale graph usually exceeds

the ability of a concentrated computing system. Therefore,

it has become a new challenge to process large-scale graphs

efficiently on distributed computing environments.

At present, Hadoop [1], a platform based on MapReduce

[2] can process massive data with better fault-tolerance

and scalability. While, most graph algorithms need iterative

computations, which needs a chain of Hadoop jobs. The

cost of warm-up and transferring the static data (i.e., the

topology information of a graph) between two consecutive

jobs is considerably large. In order to solve this problem,

Google developed a parallel graph processing system based

on the BSP model [3], called Pregel [4]. Another two

open source projects based on BSP are also developed,

Giraph [5] and Hama [6]. Giraph is developed by Yahoo

and implemented on Hadoop. An application on Giraph

is a special MapReduce job without the reduce stage. An

inbuilt loop in the map task is used to simulate the iterative

computing. Hama is being developed by Apache and also

good at processing big data iteratively, especially for the

matrix. Pregel and Giraph assumes that all data including

graph data and intermediate data (i.e., messages) are resident

in memory during iterations. Apparently, the scalability

is limited by the memory capacity of the given cluster.

Hama supports spilling message data on the local disk by

a simple mechanism but the efficiency is rather low. We

have developed an open source system whose architecture

is similar to Hama, called BC-BSP [7]. BC-BSP uses disk

as an assistant device to buffer data when the main memory

does not have enough space.

In this paper, we design an enhanced system based on

BC-BSP, called BC-BSP+, which supports a flexible con-

figuration, efficient disk buffer management and multiple

graph partition strategies. The features of BC-BSP+ are as

follows. (a) BC-BSP+ provides flexible configuration and

scalability. (b) It takes load-balance into consideration. BC-

BSP+ schedules tasks to workers with the consideration of

data locality and aims to keep the load-balance. (c) BC-

BSP+ can handle very large scale graph data with limited

resources benefitting from the disk buffer. (d) BC-BSP+

2013 IEEE International Congress on Big Data

978-0-7695-5006-0/13 $26.00 © 2013 IEEE

DOI 10.1109/BigData.Congress.2013.31

173

supports several strategies to partition the raw graph: a

Randomized Hash Partition (RHP) method, a Balanced Hash

Partition (BHP) [8] method and a Vertex-Cut based on Range

Partition (VCRP) method.

The remainder of this paper is organized as follows.

Section II gives the overview of BC-BSP+. Section III

describes the disk management mechanism. Graph partition

strategies are presented in Section IV. Section V shows the

experimental results and the analysis. The last section draws

the conclusions.

II. OVERVIEW OF BC-BSP+

A. BSP Model

BSP (Bulk Synchronous Parallel) is a bulk synchronous

model [3]. There is a master to coordinate all tasks in the

cluster for storing data and running programs. BSP is a

parallel computing model which is well-suited for iterations.

A BSP-based application consists of a series of iterations

(i.e., super-steps in Pregel). In each iteration, all tasks are

executed in asynchronously parallel, and they can send

messages to other tasks to exchange the intermediate results.

The next iteration can start until the computing and message

operations (i.e., sending and receiving) of each task has been

completed. The two consecutive iterations is separated by

the barrier synchronization. All tasks keep alive until the

graph algorithm terminates, which avoids the shortcomings

of MapReduce-based systems. Pregel, Hama and Giraph are

three typical systems based on BSP.

B. Architecture of BC-BSP+

BC-BSP+ is a BSP-based system and its architecture is

shown in Figure 1. It is similar to BC-BSP [7] except the

graph partition strategies.

Core Computing Engine

BSP
Controller Worker Task

Fault-Tolerance Controller

Message CommunicatorGlobal Synchronizer

CLI/API

Applications (PageRank, et al.)

Mgt. Tools

Deployment
/Configuration

Log Mgt.

Performance
Mgt.

Fault Mgt.

Client

RHP BHP VCRPGraph Partition
Strategies

Disk Buffer Managerment

Figure 1: The entire system framework of BC-BSP+

Limited by the manuscript space, this paper only describes

the partition strategies, the details of other components are

referred to [7]. Users interact with the BC-BSP+ system

by Client. All configuration parameters of this job will be

delivered to BSPController by Client. For BC-BSP+, a new

parameter is the type of graph partition strategies which can

be RHP, BHP and VCRP. RHP is the default strategy because

it is simple and no other additional conditions are needed.

For BHP, users must set the number of V irtual Buckets
(see in Section IV). And for VCRP, the qualification is that

each vertex is assigned a unique ID which is numbered

consecutively. Therefore, users must choose a reasonable

strategy according to their situations.

C. Interfaces of BC-BSP+
BC-BSP+ provides simple application program interfaces

(APIs) for users to implement a complex graph algorithm.

The following is a brief introduction to these APIs.
compute(): Users implements this interface to express the

function of their applications. It will be invoked for every

vertex at every super-step if it is necessary.
V ertexContextInterface: BC-BSP+ is a vertex-centric

system. When invoking compute(), the context of the cur-

rent vertex must be visible for users. The context of a vertex

includes its ID, value, aggregation results of the previous

super-step, and received messages.
Combiners: It is used to merge messages sent to the

same vertex to reduce the communication overhead.
Aggregators: Some statistic information, such as the

rank errors for PageRank, can be collected by this interface.
Partitioner: Before processing the data, the raw data

should be assigned to each task by a certain principle. Now,

we provide three strategies for users to choose: Randomized

Hash Partition (RHP), Balanced Hash Partition (BHP) and

Vertex-Cut based on Range Partition (VCRP).
Input and Output: Different Input and Output interfaces

are suited for different data source, such as HDFS and

HBase.

D. Implementation of BC-BSP+
1) BSPController: BSPController is the center of the BC-

BSP+ cluster. It is responsible for managing all worker

nodes, such as monitoring the status of the cluster, pro-

cessing periodical heartbeat information reported by each

worker, and controlling the global synchronization for each

job. When a user submits a job, it assigns a unique job ID,

and then prepares to schedule it. The scheduler selects one

job to run by the priority and FIFO strategy. Then the task

scheduler assigns tasks to workers considering load balance

and data locality.
2) Worker Manager: WorkerManager manages tasks

which run on this worker node and maintains statistic

information. WorkerManager first registers itself to BSPCon-

troller to join the BC-BSP+ cluster. Then, it sends heartbeat

signals to BSPController to report its status periodically.

When a new task arrives at a worker, WorkerManager

will create a task process to run it. Tasks belonging to

the same job and running on the same worker node will

be managed by WorkerAgentForJob which is created by

WorkerManager. WorkerAgentForJob is responsible for the

local synchronization and aggregation.

174

3) Task: A BC-BSP+ job consists of several tasks. After

all tasks have been assigned to worker nodes, they first load

the raw graph data and then partition the data according to

the partition strategy. After that, tasks can go into iterative

computations.

III. DISK BUFFER MANAGEMENT

Pregel and other open source systems, such as Hama

and Giraph, suppose that there are enough worker nodes

and resources in the cluster to hold all graph data and

intermediate data (such as messages) in main memory during

computing. However, considering the economic cost and the

bottleneck of Master (i.e., BSPController) for a large Master-

Slave infrastructure, it is an economic solution if we can spill

some data on the disk.

BC-BSP+ applies disk space to store some graph data

and intermediate messages temporally in order to process

large-scale data by utilizing limited resources. As illustrated

in Figure 2, BC-BSP+ divides the JVM heap space into

three parts to cache graph data objects, messages and other

objects. The space percentages occupied by the three parts

are α, β and γ, which can be configured by users.

 Graph Data
Objects

 Message Data
Objects

Other Temporary
Objects

JVM heap space

α β γ

Figure 2: The management model for JVM heap space

In order to avoid the overflow of memory, the data should

be spilled onto disk when the memory occupied by the data

exceeds the given threshold. For BC-BSP+, graph data and

message data are swapped by using hash bucket techniques.

Thus, graph records and messages will be hashed into the

corresponding bucket by the same hash function. Therefore,

we can ensure that messages sent to the same vertex will

be hashed into the same bucket. Thus, the local computing

is divided into several stages. At every stage, one bucket

is processed. For the ith stage, we first load messages

sent to the ith hash bucket from the disk into the main

memory. Then, graph data of the ith bucket are also put into

memory. At last, every record will be processed by invoking

compute(). Consequently, BC-BSP+ can match the graph

data with the messages sent to them efficiently even though

they are spilled on the disk.

For messages, each task maintains three queues: (1)

ReceivedQueue: it manages messages which are sent from

the last super-step, processed in the current super-step, and

kept in memory as far as possible; (2) ReceivingQueue:

it manages messages which will be processed in the next

super-step, and have the highest priority to be spilled on-

to disk; (3) SendingQueue: manages messages which are

produced during the computing, and will be combined by

Combiner when the length of the Queue exceeds a given

threshold and sent to destination tasks immediately.

IV. GRAPH DATA PARTITION STRATEGY

The overhead of communication is a heavy bottleneck

for the distributed computation based on BSP. The existing

works focus on the combination function, such as Pregel,

Giraph, Hama and Hadoop. The communication cost is

affected by the graph data partition strategy greatly [9].

Thus, we have designed three graph partition strategies for

BC-BSP+: (1) Randomized Hash Partition (RHP), which is

simple; (2) Balanced Hash Partition (BHP), which considers

load balance; (3) Vertex-Cut based on the Range Partition

(VCRP), which efficiently utilizes the locality of the raw

graph. The process of loading data and partitioning a graph

is called Preprocessing.

A. RHP and BHP Mechanisms

Randomized Hash Partition (RHP) is a simple partition

strategy which has been adopted by Pregel, Hama and other

platforms. RHP partitions a graph by the hash code of one

vertex ID. It is simple but may lead to heavy load skew.

Furthermore, RHP does not consider the locality of graph,

so the communication cost among different partitions will

be considerably large.

Traditional graph partition technology usually requires

many iterations, so the time complexity is too high [10],

[11], [12], [13], [14], and the partition results don’t have

the mapping information from vertices to partitions. Thus,

we propose a Balanced Hash Partition (BHP) [8] method by

extending RHP. The metric of one task’s load is defined as

Computation Load.

Definition 1: Computation Load

The computation load of one task includes two parts: pro-

cessing local graph data and sending new messages. It can

be evaluated as: |E| · (Costdisk +Costcpu +Costnetwork),
where, |E| denotes the number of vertices and edges of one

task. Considering that the scale of edges is rather larger

than that of vertices, we ignore the overhead of processing

vertices.

As illustrated in Figure 3, for a graph processing job with

P tasks, in order to achieve the balance of each partition

as much as possible, we first partition the raw graph into

M buckets (M > P) and collect the metadata of every

bucket, such as the number of records and outgoing edges.

We call these M buckets as V irtual Buckets. After that,

we re-organize the M V irtual Buckets into P partitions

by a greedy algorithm to balance the Computation Load
of each partition. In addition, we also consider the locality

of different V irtual Buckets to reduce the communication

cost during re-organizing.

175

Input data

Partition-1

Task-1

V
B

-1

V
B

-2

V
B

-3

V
B

-4

V
B

-5

V
B

-6

T
as
k-
1

V
B

-1

V
B

-2

V
B

-3

V
B

-4

V
B

-5

V
B

-6

T
as
k-
2

Input data

Partition-2

Task-2

HDFS

Virtual
Bucket

Partition
Task

Figure 3: The illustration of the BHP method

B. Vertex-Cut Based on the Range Partition Strategy

PowerGraph [9] has proposed a new mechanism, named

Vertex-Cut, to reduce the message scale passed among

tasks during the iteration. Its effectiveness is validated by

experiments. However, the Preprocessing is rather time-

consuming. PowerGraph designed three partition strategies:

RHP, Oblivious and Coordinated. Oblivious and Coordi-

nated are both heuristic algorithms. PowerGraph evaluated

their replication factor of vertices and the running time of

Preprocessing. The experiment results show that the strat-

egy with a lower replication factor is more time-consuming.

Thus, Oblivious is a compromised method.

The three partition strategies of PowerGraph ignore the

locality of the raw graph data. The raw graph data are

usually crawled from Web pages or social networks with

different strategies. For big data, the breadth-first search

(BFS) algorithm can yield high-quality pages [15] and is

easy to be implemented in parallel [16]. We notice that the

locality of the raw graph data generated by BFS can be kept

by the range partition strategy. Furthermore, the range parti-

tion strategy has the flexibility to balance the Computation
Load of different tasks. Therefore, we propose the vertex-

cut method based on the range partition mechanism, called

VCRP, to obtain a lower replication factor and reduce the

running time of Preprocessing.

To introduce VCRP better, we suppose that: (1) The

raw graph data are crawled with the BFS algorithm. (2)

Each vertex is assigned a unique ID which is numbered

consecutively according to the order of BFS. (3) For the

raw graph, a whole record, which includes the vertex data

and its outgoing edge data, is maintained by only one task.

1) Range Partition Strategy: For a graph processing job,

P tasks will be started to execute the computation in

parallel, which means the raw graph must be divided into P
partitions. Before the iterative computation, every task loads

the partial graph data and organizes them on the local disk.

Every partial graph has the approximate byte size in order

to ensure the load balance. After that, every task collects

the statistic information of its partial graph data, which is

denoted by I . The information of the ith task is:

Ii =< ID[task],Min,R, |V |, |E| > (1)

Where, Min is the minimal vertex ID in this partition,

R denotes the range of vertex IDs, and |V | and |E| are

the number of records and outgoing edges separately in this

partition. I is reported to the BSPController and then the

whole graph will be partitioned into P partitions. Every task

handles only one partition. The map table between tasks

and partitions is called the global route table G. G will

be sent to every task to provide the addressing service for

communication. For the ith partition Pi, its metadata is:

Pi =< ID[task],Min
′
, R

′
, |V |′ , |E|′ > (2)

and the vertex ID is continuous between two consecutive

partitions:

GetMin(Pi+1) = GetMin(Pi) +GetRange(Pi) (3)

Many optimization strategies can be implemented during

partitioning. As illustrated in Figure 4, the balance of

Computation Load can be controlled by adjusting the

record distribution among different partitions. Consequently,

the elements of P metadata are similar with I but their

values may be different.

task one1 2, 3, 4
2 1, 3

3 2, 4, 5
4 5, 6, 7, 8, 9
5 1, 2, 4, 7, 8

6 4, 5
7 1, 2
8 1, 2, 4
9 4, 5

task two

task three

ID outgoing edges BSPController

1 2, 3, 4
2 1, 3
3 2, 4, 5

4 ...
5 ...

6 4, 5
7 1, 2
8 1, 2, 4
9 4, 5

task one

task two

task three

Route Table G

adjust

Figure 4: The illustration of the Range Partition method

2) Vertex-Cut based on Range Partition (VCRP): We

integrate the Vertex-Cut technique with the Range Parti-

tion strategy and then propose the new VCRP method. It

partitions the input graph with the Range Partition strategy

first. After exchanging records among tasks, the next stage

is Shuffle, which will be used to complete the Vertex-

Cut. During Shuffle, every outgoing edge in Pi is sent to

P
′
i which contains its destination vertex ID. For P

′
i , edges

belonging to the same source vertex v will be re-organized

by the adjacency list. The source vertex in P
′
i is a replication

of v in Pi (as shown in Figure 5). After Shuffle, the system

begins to compute graph iteratively.

During iterations, every vertex receives messages from

the previous iteration, updates its value and then computes

the value of its replications. Notice that its ”outgoing edge

176

list” is now ”partition distribution list” which records the

locations of its replications. Then it sends ”replication value”

to all replication vertices by networks. In P
′
i , the replication

vertex receives ”replication value”, generates messages, and

then sends them to the destination vertices by local process-

ing (as shown in Figure 5).

For example, in Figure 5, there are three partitions (i.e.,

tasks) of a graph job and the raw graph data are organized

by the adjacency list. After Shuffle, outgoing edges are

distributed to partitions (i.e., tasks) which contain the des-

tination vertices (replications) and the raw outgoing edge

list is used to record the distribution of partitions. And

then, during the computation, tasks only send ”replication

value” to ”replications” via network and local messages will

be generated for the destination vertices. The ”replication

value” scale is rather less than that of ”local message”, so

the overhead of communication will be reduced greatly.

1 2, 3, 4
2 1, 3
3 2, 4, 5

4 5, 6, 7, 8, 9
5 1, 2, 4, 7, 8

6 4, 5
7 1, 2
8 1, 2, 4
9 4, 5

pa
r1

outgoing edges partition distribution

1 [par1, par2]
2 [par1]
3 [par1, par2]

4 [par2, par3]
5 [par1, par2, par3]

6 [par2]
7 [par1]
8 [par1, par2]
9 [par2]

pa
r2

pa
r3

replicationShuffle

lo
ca
lm
es
sa
ge

par 1

par 2

par 3

sending
replication

value

co
m
m
un
ic
at
io
n

lo
ca
lm
es
sa
ge

Figure 5: The illustration of the VCRP method

C. The Locality of VCRP Analysis

For the randomized Vertex-Cut, J.E. Gonzalez and Y. Low

et al. [9] evaluated the expected replications for a vertex v
as follows:

�[|H(v)|] = |P |(1− (1− 1

|P |)
|E(v)|) (4)

Where, |P | is the number of tasks (i.e., partitions) and

E(v) is the edge collection of v. And the expected replica-

tions for the whole graph is [9]:

�[1

|V |
∑

v∈V

|H(v)|] = |P |
|V |

∑

v∈V

(1− (1− 1

|P |)
|E(v)|) (5)

Before analyzing the locality of VCRP, we fist give the

notations throughout this section.

Definition 2: Maximal Destination Vertex ID (MDVID)

Before Shuffle, the partition which contains vertex

v can be obtained from the route table G by Pi =
getPartition(G, ID[v]). Then, the precursor partition col-

lection is defined as: Ppre = {P0, P1, P2, ..., Pi}. MDVID

is the maximal destination vertex ID which satisfies: ∀e ∈
Ppre,MDV ID ≥ DstID[e].

Definition 3: Randomized Distributed Edges (Erde(v))

Before Shuffle, for the vertex v, its outgoing edge col-

lection is E(v), then Erde(v) = {e|DstID[e] ≤ MDV ID∧
e ∈ E(v)}.

Definition 4: Cluster Distributed Edges (Ecde(v))

Before Shuffle, for the vertex v, its outgoing edge col-

lection is E(v), then Ecde(v) = {e|DstID[e] > MDV ID∧
e ∈ E(v)}.

For example, in Figure 5, the outgoing edges in shadow

boxes are all Cluster Distributed Edges. Then, for vertex

v, we can evaluate the expected replications of VCRP as

follows:

�[|R(v)|] = |Ppre|(1− (1− 1

|Ppre|)
|Erde(v)|) + χ (6)

Where, χ is a variable which is equal to 1 if |Ecde| > 0
and |Ppre| < |P |. Otherwise, its value is zero.

Since the graph is generated by BFS and is partitioned

with the Range Partition strategy, for v, if its |Ecde| > 0
and |Ppre| < |P |, then, the DstID[e] must be in the

same partition. Notice that, for some special vertices, the

DstID[e] may be across two consecutive partitions. While,

for the whole graph, this situation only happens (|P | − 1)
times at most. So we ignore it for one vertex v and consider

it when computing the maximal expected replications for the

whole graph:

�[1

|V |
∑

v∈V

|R(v)|] = 1

|V | ((|P | − 1) +
∑

v∈V

�[|R(v)|]) (7)

By analyzing the derivative of Formula 4 and Formula 6,

we can conclude that for vertex v, the expected replications

of VCRP is fewer than that of randomized Vertex-Cut,

but their overheads of Preprocessing are similar. And

experiments in Section V show that the expected replications

approximate to Coordinated, the complex heuristic algorithm

of PowerGraph.

V. EXPERIMENTS AND PERFORMANCE EVALUATION

We evaluate BC-BSP+ prototype system by the PageRank

algorithm over real data sets [17], [18], [19] and synthetic

data sets. Data sets are listed in Table I. We compare

BC-BSP+ with Hadoop, Giraph and Hama. The cluster is

composed of 33 nodes which are connected by gigabit

Ethernet to a switch. Each node has 2 Intel Core i3-2100

CPUs, 8GB RAM (but 2GB for one task), and a 500GB

disk with 7,200 RMP.

A. Evaluation of RHP, BHP and VCRP

This suit of experiments is used to evaluate the perfor-

mance of RHP, BHP and VCRP. First, we set 9 tasks and

1GB JVM memory to complete the graph Preprocessing
job.

177

Table I: Characteristics of datasets

Dataset Vertices Edges Avg. Degree File Size

Wiki-talk 2,394,385 5,021,410 2.097 45.4MB

Skitter 1,696,415 11,095,298 6.54 116MB

Patent 3,774,768 16,518,948 4.38 203MB

Live-J 4,847,571 68,993,773 14.23 700MB

Wiki-pp 5,716,808 130,160,393 22.77 1.5GB

Twitter 41,700,000 1,470,000,000 35.25 12.59GB

 200
 220
 240
 260
 280
 300
 320
 340

 0 50 100 150 200

ru
nn

in
g

tim
e(

s)

the value of M/P

optimal

performance

Figure 6: The effect of different M/P for PageRank

We validate the effect of BHP by comparing it with

RHP. Considering that the Range Partition method can

accurately adjust records to ensure the load balance, we do

not evaluate its effect. Obviously, the number of V irtual
Buckets will affect the performance of BHP. As shown

in Figure 6, for Live-J, when the number of M/P (M is

the number of V irtual Buckets and P is the number of

partitions) is between 50 and 100, the effect is better. Thus,

in the following experiments, we set the number of V irtual
Buckets as 50.

Since the Computation Load is affected by the number

of edges, we describe the load unbalance as the variance

of outgoing edges among different partitions. We define the

Maximal Unbalance Degree (MUD) as the D-value between

the maximal volume of edges and the minimal volume of

edges among partitions. Figure 7 shows that MUD of BHP

has been reduced by roughly 30% than that of RHP. Figure

8 shows that, compared with RHP, the communication scale

of Preprocess of BHP can be reduced by up to 41% (for

Live-J) because BHP considers the data locality when re-

organizing the V irtual Buckets.

Figure 9 shows that running time of Preprocessing for

RHP, BHP and VCRP. We find that the cost of BHP is more

than RHP because the former needs to re-organize V irtual
Buckets and construct the global route table. However, the

performance of VCRP is similar to that of RHP, even better,

which benefits from utilizing the locality of Range Partition.

Then we compare the communication scale per iteration

and the overall running time of one graph job. Figure 10

shows that the communication scale of BHP can be reduced

by up to 36% than that of RHP (for Live-J). For VCRP, the

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Patent Live-J Wiki-PP

M
U

D
(1

03)

graph datasets

RHP
BHP

Figure 7: MUD of outgoing edges

 150
 200
 250
 300
 350
 400
 450
 500
 550

Patent Live-J Wiki-PP
m

es
sa

ge
 s

ca
le

(1
04)

graph datasets

RHP
BHP

Figure 8: The message scale of Preprocessing

 10
 20
 30
 40
 50
 60
 70
 80
 90

Patent Live-J Wiki-PP

ru
nn

in
g

tim
e(

s)

graph datasets

RHP
BHP
VCRP

Figure 9: The running time of Preprocessing

value is even 87.3%. Figure 11 shows the overall running

time. Obviously, the performance of BHP and VCRP is

better than that of RHP. Especially, the speedup of VCRP

compared to RHP is roughly a factor of 2 to 6. The reason

is that VCRP reduces the communication scale effectively.

Moreover, we also compare the effect of VCRP with the

original Vertex-Cut method of PowerGraph over Twitter. The

number of tasks varies from 8 to 32. Oblivious and Coordi-

nated are two heuristic methods of PowerGraph. Figure 12

shows that the replication factor of VCRP is similar to that of

Coordinated. However, the running time of Preprocessing

178

 200

 400

 600

 800

 1000

 1200

 1400

Patent Live-J Wiki-PP

m
es

sa
ge

 s
ca

le
(1

05)

graph datasets

RHP
BHP
VCRP

Figure 10: The message scale per iteration

 100

 200

 300

 400

 500

 600

 700

Patent Live-J Wiki-PP

ru
nn

in
g

tim
e(

s)

graph datasets

RHP
BHP
VCRP

Figure 11: The overall performance

 0
 2
 4
 6
 8

 10
 12
 14

8 16 32

re
pl

ic
at

io
n

fa
ct

or

#tasks

RHP
Oblivious
Coordinated
VCRP

Figure 12: Replication factor (Twitter)

of VCRP is further less than that of Coordinated (as shown

in Figure 13). Therefore, the overall performance of VCRP

is better than that of other three methods.

Considering the wonderful performance of VCRP, we

adopt it as the default partition strategy in the following

experiments.

B. Evaluation of Overall Performance of BC-BSP+ and
Hadoop

We use 9 nodes of the cluster to run PageRank for

BC-BSP+ and Hadoop on real datasets listed in Table I.

The JVM memory is set to 1GB. For BC-BSP+, 9 tasks

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

8 16 32

ru
nn

in
g

tim
e(

s)

#tasks

RHP
Oblivious
Coordinated
VCRP

Figure 13: The running time of Preprocessing (Twitter)

 100

 200

 300

 400

 500

 600

 700

Wiki-talkSkitter Patent Live-J
ru

nn
in

g
tim

e(
s)

graph datasets

Hadoop
BC-BSP+

Figure 14: The overall performance of Hadoop and BC-

BSP+

 0

 20

 40

 60

 80

 100

0.5M 1.0M 1.5M 2.5M 5.0M

ru
nn

in
g

tim
e(

s)

graph scale

BC-BSP+
Giraph
Hama

Figure 15: Comparison among BC-BSP+, Giraph and Hama

over synthetic datasets, where 0.5M denotes 0.5 million

vertices and the average degree is always 21.5

are started to compute in parallel. While, for Hadoop, the

number of Mapper tasks is determined by the raw data block

size of HDFS, but the number of Reducer tasks is setup

as 9 (i.e., 9 nodes). Based on the above environment and

configurations, the experiment results show that the speedup

of BC-BSP+ compared to Hadoop is roughly a factor of 8

(shown in Figure 14).

179

C. Evaluation of Overall Performance of BC-BSP+, Giraph
and Hama

This suit of experiments are used to test the processing

ability of BC-BSP+, Giraph and Hama, by running the

PageRank algorithm. Because the difference of the pro-

cessing capability of the three BSP-based systems and the

difference of their expressions on data, we generate the

synthetic datasets to complete the comparison. The memory

of every JVM is set as 2GB. The experimental results are

shown in Figure 15.

As illustrated in Figure 15, the overall performance of

BC-BSP+ is always better than that of Giraph and Hama.

Hama can not run PageRank when the vertex scale is more

than 2.5 million, since the system runs out of memory.

The running time of BC-BSP+ is 2 times faster than that

of Hama. Compared with Giraph, the speedup is even 6.

BC-BSP+ can process large graphs efficiently with limited

resources.

VI. CONCLUSIONS

This paper describes the BC-BSP+ system, a platform for

large-scale graph processing based on the BSP model. It

implements the main functions mentioned in Pregel. Fur-

thermore, BC-BSP+ can process large graphs with limited

resources because it supports disk buffer management. And

we design BHP and VCRP partition strategies to improve

the overall performance. The performance of VCRP is better

than that of BHP. However, the raw graph of VCRP must be

crawled by the bread-first search algorithm and vertex IDs

must be numbered consecutively. The experiments show that

the overall performance of BC-BSP+ is better than that of

Hadoop, Giraph and Hama.

In future work, we will analyze the locality of the depth-

first search (DFS) algorithm and validate the effect of VCRP

for graphs crawled by the BFS algorithm and the DFS

algorithm. And we will improve functions of BC-BSP+.

ACKNOWLEDGMENT

This work is partially supported by the Key National Nat-

ural Science Foundation of China under Grant No.61033007,

the National Natural Science Foundation of China under

Grant No.61173028 and No.61272179, the Fundamental

Research Funds for the Central Universities under Grant

No.N100704001 and No.N110404006, and the Ministry of

Education of China and China Mobile Foundation under

Grant No.MCM20125021.

REFERENCES

[1] Apache Hadoop, http://hadoop.apache.org/

[2] J. Dean and S. Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. Communications of the ACM,
51(1):107-113, 2008.

[3] L.G. Valiant. A Bridging Model for Parallel Computation.
Communications of the ACM, 33(8):103-111, 1990.

[4] G. Malewicz, M.H. Austern, A.J.C. Bik, et al. Pregel: a System
for Large-Scale Graph Processing. In Proc. of SIGMOD, pages
135-146, 2010.

[5] Apache Incubator Giraph, http://incubator.apache.org/giraph/

[6] Apache Hama, http://hama.apache.org/

[7] Y.B. Bao, Z.G. Wang, Y. Gu, G. Yu, et al. BC-BSP: A BSP-
Based Parallel Iterative Processing System for Big Data on
Cloud Architecture. First International DASFAA Workshop on
Big Data Management and Analytics, 2013.

[8] S. Zhou, Y.B. Bao, Z.G. Wang, et al. BHP: A BSP Model
Oriented Graph Data Partition with Load Balancing. Journal of
Frontiers of Computers Science and Technology, unpublished.

[9] J.E. Gonzalez, Y. Low, H.J. Gu, et al. PowerGraph: Distributed
Graph-Parallel Computation on Natural Graphs. In Proc. of
OSDI, pages 17-30, 2012.

[10] B.W. Kernighan and S. Lin. An Efficient Heuristic Procedure
for Partitioning Graphs. Bell Syst. Tech. J., 49(2):291-307,
1970.

[11] C.M. Fiduccia and R.M. Mattheyses. A Linear-Time Heuristic
for Improving Network Partitions. In Proc. of the 19th Design
Automation Conference, pages 175-181, 1982.

[12] B. Krishnamurthy. An Improved Min-Cut Algonthm for Par-
titioning VLSI Networks. IEEE Transactions on Computers,
33(5):438-446, 1984.

[13] W.E. Donath and A.J. Hoffman. Lower Bounds for the
Partitioning of Graphs. IBM Journal of Research and Devel-
opement, 17(5):420-425, 1973.

[14] M. Girvan and M.E.J. Newman. Community Structure in
Social and Biological Networks. In Proc. of the National Acad.
of Sci. of the United States of America, 9(12):7821-7826,
2002.

[15] M. Najork and J.L. Wiener. Breadth-First Search Crawling
Yields High-Quality Pages. In Proc. of WWW, pages 114-118,
2001.

[16] P. Boldi, B. Codenotti, M. Santini and S. Vigna. UbiCrawler:
a Scalable Fully Distributed Web Crawler. Software-Practice
& Experience, 34(8):711-726, 2004.

[17] Stanford Large Network Dataset Collection,
http://snap.stanford.edu/data/

[18] Using the Wikipedia link dataset,
http://haselgrove.id.au/wikipedia.htm

[19] What is Twitter, http://an.kaist.ac.kr/traces/WWW2010.html

180

